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Abstract

In the present study, an attempt has been made to develop a method for predicting �-turns in proteins. First,
we have implemented the commonly used statistical and machine-learning techniques in the field of protein
structure prediction, for the prediction of �-turns. All the methods have been trained and tested on a set of
320 nonhomologous protein chains by a fivefold cross-validation technique. It has been observed that the
performance of all methods is very poor, having a Matthew’s Correlation Coefficient (MCC) � 0.06.
Second, predicted secondary structure obtained from PSIPRED is used in �-turn prediction. It has been
found that machine-learning methods outperform statistical methods and achieve an MCC of 0.11 when
secondary structure information is used. The performance of �-turn prediction is further improved when
multiple sequence alignment is used as the input instead of a single sequence. Based on this study, we have
developed a method, GammaPred, for �-turn prediction (MCC � 0.17). The GammaPred is a neural-
network-based method, which predicts �-turns in two steps. In the first step, a sequence-to-structure network
is used to predict the �-turns from multiple alignment of protein sequence. In the second step, it uses a
structure-to-structure network in which input consists of predicted �-turns obtained from the first step and
predicted secondary structure obtained from PSIPRED. (A Web server based on GammaPred is available at
http://www.imtech.res.in/raghava/gammapred/.)
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The prediction of secondary structure is an intermediate step
in structure prediction. Helices and strands are the most
common stabilizing secondary structures, but proteins can-
not attain globularity in the absence of turns, which provide
a directional change for the polypeptide chain. Therefore,
the prediction of tight turns in proteins is as important as
helix and strand prediction. The tight turns are classified as
�-turns, �-turns, �-turns, �-turns, and �-turns, depending
on the number of residues involved in forming the turn
(Chou 2000). The �-turns are the most commonly found
turns in proteins. In the past, several methods were devel-

oped for predicting �-turns in proteins (Shepherd et al.
1999; Kaur and Raghava 2002a,b).

The �-turn is the second most characterized and com-
monly found turn, after the �-turn. A �-turn is defined as a
three-residue turn with a hydrogen bond between the car-
bonyl oxygen of residue i and the hydrogen of the amide
group of residue i + 2. There are two types of �-turns: in-
verse and classic (Bystrov et al. 1969). In the past, a sys-
tematic and careful search for �-turns in proteins was car-
ried out, but not a single �-turn prediction method has been
developed so far (Alkorta et al. 1996). We therefore believe
that it will be worthwhile to develop a prediction method for
�-turns.

In this study, we have applied several techniques for
�-turn prediction that are used commonly in secondary
structure or �-turn prediction. Besides the commonly used
techniques, we have also used a new machine-learning tech-
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nique called the Weka classifier. The methods used in the
present study can be divided into two categories, statistical
and machine-learning techniques. The statistical methods
include the Sequence Coupled Model and the GOR method
(Garnier et al. 1978; Gibrat et al. 1987; Chou 1997a,b; Chou
and Blinn 1997). The machine-learning techniques include
the neural network (using the SNNSv4.2 package; Zell and
Mamier 1997) and Weka3.2 (Witten and Frank 1999).

Initially, we implemented all these methods as they were
used in the literature. But we found that the performance of
all these methods is nearly the same and very poor. We
studied the effect of predicted secondary structure and mul-
tiple sequence alignment information obtained from
PSIPRED (Jones 1999; Kaur and Raghava 2002b, 2003).
Based on our observations, we developed a method called
GammaPred, for �-turn prediction (MCC � 0.17). Gamma-
Pred is a neural-network-based method that uses two steps.
In the first step, a sequence-to-structure network is used to
predict the �-turns from multiple alignment of the protein
sequence. In the second step, GammaPred uses a structure-
to structure network, in which the input is the predicted
�-turns obtained from the first step and the predicted sec-
ondary structure.

Results

The performance of various methods is shown in Table 1.
All the methods have been trained and tested using fivefold
cross-validation. The prediction performance measures
have been averaged over five sets and are expressed as the
mean ± standard deviation. The input in all the methods is
a single amino acid sequence. In the case of statistical meth-
ods, parameters/propensities have been calculated for turns
and non-turns separately (as described in Materials and
Methods). In the case of Weka, three algorithms have been

used. The neural network has been trained using a back-
propagation algorithm. As shown in Table 1, the perfor-
mance of all methods is very poor (MCC � 0.06) and is
comparable except for the Weka J48 classifier, in which
MCC is only 0.02. The performance of all methods in terms
of Qpred (the probability of correct prediction) is signifi-
cantly lower than the Qobs (the coverage of �-turns).

Effect of secondary structure on �-turn prediction

To further improve the performance, the secondary struc-
ture predicted by PSIPRED has been used to filter the �-turn
prediction in the case of statistical methods. In the case of
machine-learning methods, predicted secondary structure
information along with the predicted �-turns (obtained from
the first step) have been used as the input for a structure-
to-structure network and Weka classifiers. The performance
of all the methods, after incorporating secondary structure
information, has been shown in Table 1. However, the per-
formance of all the methods increases significantly, but its
magnitude is much higher in the case of machine-learning
methods (MCC increases from 0.06 to 0.11) in comparison
to statistical methods (MCC increases from 0.06 to 0.08/
0.09). The prediction performance of statistical methods
with and without secondary structure information is also
compared objectively by using a single performance metric,
the ROC. It is clear from the ROC plot (Fig. 1) that without
secondary structure, both GOR and the Sequence Coupled
Model perform equally, as the ROC value of both the meth-
ods is equal to 0.62. When secondary structure information
is used in prediction, the GOR method slightly outperforms
the Sequence Coupled Model. Its ROC value equal to 0.65
is indicative of its better performance and is in agreement
with its higher MCC value as compared to that of the Se-
quence Coupled Model, which has ROC � 0.63.

Table 1. Results of �-turn prediction methods, when single sequence was used as input

Method Qtotal Qpred Qobs MCC

Sequence coupled model 66.3 ± 0.8 2.8 ± 0.4 50.1 ± 2.4 0.05 ± 0.01
(57.8 ± 1.9) (5.9 ± 0.6) (43.2 ± 2.4) (0.08 ± 0.01)

GOR 62.1 ± 2.0 4.7 ± 0.4 55.4 ± 2.3 0.06 ± 0.01
(75.5 ± 1.4) (6.1 ± 0.6) (45.5 ± 2.1) (0.09 ± 0.01)

SNNS (std. back-propagation) 56.1 ± 4.0 4.3 ± 0.4 59.4 ± 6.7 0.06 ± 0.01
(57.4 ± 2.5) (5.4 ± 0.6) (73.1 ± 5.2) (0.11 ± 0.01)

Weka (logistic regression) 61.7 ± 1.8 4.7 ± 0.5 56.2 ± 2.0 0.06 ± 0.01
(61.9 ± 0.8) (5.7 ± 0.7) (69.4 ± 2.3) (0.11 ± 0.01)

Weka (naive Bayes) 66.5 ± 1.5 4.8 ± 0.6 49.5 ± 4.7 0.06 ± 0.01
(56.8 ± 2.2) (5.3 ± 0.5) (72.1 ± 1.6) (0.10 ± 0.01)

Weka (J48 classifier) 89.6 ± 0.5 4.3 ± 1.1 10.4 ± 2.2 0.02 ± 0.01
(91.1 ± 0.4) (6.4 ± 0.7) (13.1 ± 1.4) (0.05 ± 0.01)

The performance is averaged over five test sets.
Values in parentheses correspond to the performance of �-turn prediction methods, when secondary structure
information obtained from PSIPRED was also used.
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Information from multiple alignment

The comparative results of neural networks and Weka clas-
sifiers are shown in Table 2. The prediction accuracy is
increased from 56.1% to 76.6% when the network 5(21)-
25-1 is trained on multiple alignment matrices. The predic-
tion accuracies are 62.7%, 59.0%, and 92.5% for the Weka
classifiers logistic regression, naive Bayes, and J48, respec-
tively. Moreover, the improvement is more significant in the
case of the neural network in comparison to Weka classifi-
ers.

Multiple alignment and secondary structure information

We combined the information obtained from secondary
structure and multiple alignments to study the combined

effect on machine-learning-based methods. There has been
tremendous improvement in the performance of methods, as
shown in Table 2. The neural-network method achieved an
MCC value of 0.17, which is much higher than the MCC
value of 0.06 in the absence of secondary structure and
multiple alignments information. As shown in Figure 2, the
ROC is also improved significantly. The corresponding ar-
eas under the ROC curves are: single sequence, 0.61; single
sequence with secondary structure, 0.65; multiple align-
ment, 0.69; and multiple alignment with secondary struc-
ture, 0.73. These ROC values reflect the better discrimina-
tion of the network system, consisting of a first network
trained on multiple alignment profiles and a second filtering
network trained on the output of the first network and sec-
ondary structure in comparison to three other network sys-
tems. The results are consistent with threshold-dependent
measures.

PSIPRED cross-validation

Although our data set is nonhomologous, it contains some
of the protein chains used to train PSIPRED. As a conse-
quence, we have cross-validated the results of SNNS and
Weka classifiers by removing those proteins from our data
set that were used to develop PSIPRED. The results are
given in Table 2. It is clear that the difference in prediction
results is very small or almost negligible.

GammaPred server

Based on our study, we have developed a Web server that
allows the user to predict �-turns in proteins over the Web.
The Web server is available free for academic or nonprofit
users. Users can enter a primary amino acid sequence in
fasta or plain text format. The output consists of predicted
secondary structure and �-turn or non-�-turn residues. (A
sample of prediction output is shown as Supplemental Ma-
terial.)

Figure 1. ROC curves for statistical methods with and without secondary
structure.

Table 2. Performance of SNNS and Weka classifiers using multiple alignment and secondary structure information

Multiple alignment Multiple alignment and secondary structure

SNNS
(first network)

Weka classifiers

SNNS
(second network)

Weka classifiers

Logistic
regression Naive Bayes J48 classifier

Logistic
regression Naive Bayes J48 classifier

Qtotal 76.6 ± 1.8 62.7 ± 1.8 59.0 ± 1.9 92.5 ± 0.2 74.0 ± 1.8 62.6 ± 1.8 57.4 ± 0.9 92.6 ± 0.2
(72.0 ± 2.0) (62.8 ± 1.8) (57.3 ± 1.3) (92.3 ± 0.4)

Qpred 5.1 ± 0.7 5.5 ± 0.7 5.1 ± 0.4 5.0 ± 1.1 6.3 ± 0.7 5.6 ± 0.7 5.0 ± 0.4 5.0 ± 1.2
(6.0 ± 0.7) (5.4 ± 0.7) (4.8 ± 1.0) (5.1 ± 1.3)

Qobs 58.6 ± 2.3 63.9 ± 3.0 65.3 ± 1.8 7.2 ± 0.9 83.2 ± 2.8 65.1 ± 2.9 65.4 ± 1.8 7.2 ± 0.9
(80.0 ± 2.4) (65.1 ± 2.0) (65.4 ± 2.0) (7.4 ± 0.8)

MCC 0.12 ± 0.01 0.10 ± 0.01 0.09 ± 0.01 0.02 ± 0.01 0.17 ± 0.01 0.12 ± 0.01 0.11 ± 0.01 0.03 ± 0.01
(0.16 ± 0.01) (0.12 ± 0.01) (0.11 ± 0.01) (0.03 ± 0.01)

Values in parentheses correspond to the prediction results obtained by excluding the proteins that were used to develop the PSIPRED method.
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Discussion

Today there exist prediction methods that can predict heli-
ces and strands from the amino acid sequence and even
�-turns, but not �-turns. Compared with �-turns, �-turns are
little investigated. This is because of the lower occurrence
of �-turns in proteins. In the past, studies of �-turns were
carried out, but not a single prediction method has been
developed so far. It will be useful to develop a method for
identifying �-turn residues within a protein sequence.

In this work, the prediction method for �-turn prediction
has been developed in a systematic way. To establish base-
line performance, the existing statistical methods such as
GOR and the Sequence Coupled Model have been imple-
mented in the first stage of prediction of �-turns using a
fivefold cross-validation technique. Both the methods per-
form equally. In the second stage, the machine-learning
methods such as neural network and Weka classifiers have
been used to further improve the prediction performance.
Surprisingly, it is found that both the statistical methods as
well as machine-learning methods have the same perfor-
mance level on single sequences. When secondary structure
information is incorporated, the machine-learning methods
outperform statistical methods. Moreover, the neural-net-
work prediction results are comparable to the Weka logistic
regression classifier. One important point that can be no-
ticed is that Qpred, the probability of correct prediction, is
significantly low in all the methods.

Because there does not exist any �-turn prediction
method, there are no values with which to compare the

results obtained in this study. But given that the �-turn
prediction study is similar to this study, the results obtained
from this study can be compared with methods of �-turn
prediction. The overall results with single sequences as well
as with secondary structure are comparatively poorer than
�-turn prediction methods BTPRED (Shepherd et al. 1999)
and BetaTPred2 (Kaur and Raghava 2003; http://www.
imtech.res.in/raghava/ betatpred2/). This is owing to the fact
that the data set used in this study is definitely more unbal-
anced than the data sets used in the �-turn prediction study.
The present data set has a ratio of ∼30:1 of non-�-turn and
�-turn residues. The fact that �-turns are very few resulted
in poor Qpred and MCC values in all the prediction results.
Moreover, a �-turn consists of three residues and thus is
much more flexible than a �-turn. In the BetaTPred2 study,
an MCC of 0.43 is reported for �-turn prediction (Kaur and
Raghava 2003).

It is known that secondary structure prediction perfor-
mance improves drastically when information from multiple
sequence alignments is used. From this study, it is clear that
a combination of a machine-learning algorithm and evolu-
tionary information contained in multiple sequence align-
ment has improved the performance of �-turn prediction.
MCC is dramatically increased from 0.06 with a single se-
quence to 0.12. Moreover, when secondary structure is
used, the neural network and Weka classifiers have final
MCCs of 0.17 and 0.12, respectively. Because Weka clas-
sifiers have not been used in protein secondary structure
prediction before, it will also be interesting to see the per-
formance of this new type of learning machine. Comparing
the results of neural network and Weka classifiers results in
favor of the neural network. However, it should also be
noted that much more time is spent in optimizing the net-
works and compensating for unbalanced data sets as com-
pared with Weka classifiers.

In summary, we found that prediction performance is not
very high for �-turn prediction even by using a neural-
network method and other machine-learning algorithms.
This is because the number of �-turns present in the data set
is low. This work is an attempt toward using and optimizing
machine-learning methods for the prediction of �-turns in
proteins. It can also be concluded that machine-learning
methods perform poorly when the available data are sparse
or ill-defined. However, further improvement in �-turn pre-
diction performance is possible with further extension or
growth of the sequence database of proteins and if more
effort is put into optimizing the training set.

Materials and methods

The data set

In this study, 320 nonhomologous protein chains were used in
which no two chains have >25% sequence identity (Guruprasad

Figure 2. ROC curves for four different neural-network systems.
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and Rajkumar 2000). The structure of these proteins is deter-
mined by X-ray crystallography at 2.0 Å resolution or better. The
PROMOTIF program has been used to assign �-turns in proteins
(Hutchinson and Thornton 1996). Each chain contains one mini-
mum �-turn.

The extracted �-turn residues have been assigned different sec-
ondary structure states by DSSP (Kabsch and Sander 1983). It has
been found that the maximum number of �-turn residues have a C
state followed by an S state and a T state in their nomenclature (see
Electronic Supplemental Material).

Fivefold cross-validation

In this study, a fivefold cross-validation technique has been used,
in which the data set is randomly divided into five subsets, each
containing an equal number of proteins (Kaur and Raghava 2003).
Each set is an unbalanced set that retains the naturally occurring
proportion of �-turns and non-�-turns. The methods have been
trained on four sets, and the performance is measured on the re-
maining fifth set. This process is repeated five times so that each
set is tested. The average performance has been calculated for all
methods on all sets. The strategy has been changed slightly in case
of SNNS to avoid overtraining of the neural network. In SNNS we
have used one set for validation also, so the training data consist of
three sets instead of four.

Methods used for �-turn prediction

Statistical method

Sequence Coupled Model

Chou (1997b) proposed a residue-coupled model based on a
first-order Markov chain to predict �-turns in proteins. The same
approach has been used here for �-turn prediction. Given a tripep-
tide, its attribute to the �-turn set S+ or the non-�-turn set S− is
expressed, respectively, by an attribute function � (�+ for a �-turn
and �− for a non-�-turn), which can be defined as:

� + �RiRi + 1Ri + 2� = gP+
i�Ri�P

+
i + 1�Ri+ 1| Ri�P

+
i+ 2�Ri+ 2 | Ri�1�

�− �RiRi+ 1Ri+ 2� = gP−
i�Ri�P

−
i + 1�Ri+ 1| Ri�P

−
i + 2�Ri+ 2| Ri�1�

where g � 104 is the amplifying factor used to move the data to a
range easier to handle, Pi

+(Ri) is the probability of amino acid Ri

occurring at subsite i in the �-turn tripeptide set S+. Pi
+(Ri) is

independent of the other subsites because Ri is located at the first
position of the three-subsite sequence. Pi + 1

+(Ri + 1 | Ri) is the
probability of amino acid Ri + 1 occurring at the subsite (i + 1)
given that Ri has occurred at position i, and so forth. The prob-
abilities have been calculated for turns and non-turns for all the
five training sets (see Electronic Supplemental Material). The dis-
criminant function can be calculated from the following equation:

��RiRi+ 1Ri+ 2� = w+ � + �RiRi+ 1Ri+ 2� − w − � − �RiRi+ 1Ri+ 2�

where w+ and w− are the weight factors for the probabilities de-
rived from the �-turn and non-�-turn training data sets, respec-
tively. Thus, a �-turn is predicted if � > 0. In the present study, the
weight factors w+ and w− have been set to unity, that is,
w+ � w− � 1.

GOR

The GOR method calculates the probability of a given amino
acid in a given secondary structure element based on information
theory. The bridge to this probability is a function called the in-
formation: I(S, R) � log P(S | R)/P(S), where P(S) is the probabil-
ity of state S in the database and P(S | R) is the conditional prob-
ability of a conformation S knowing that a residue R is present.
Furthermore, P(S | R) � P(S, R)/P(R), where P(S, R) is the prob-
ability of the joint event, residue R in conformation S, and P(R) is
the probability of observing a residue R.

The directional information values for window size five have
been calculated for each of the 20 amino acids from a training data
set consisting of �-turn and non-�-turn sequences by using the
following equation (see Electronic Supplemental Material). For
window size 5, we have:

− 2 	 m 	 + 2 and m = 0

I�Sj = x: x, Rj− m, … Rj, … Rj− m�

= I�Sj = x: x; Rj� + �
m

I�Sj = x: x; Rj + m | Rj�

Machine-learning methods

Neural Network Method (SNNS)

In the present study, two feed-forward back-propagation neural
networks with a single hidden layer have been used. The window
size and the number of hidden units have been optimized. In this
study two networks have been used: (1) sequence to structure and
(2) structure to structure. In both networks, the input window of
size five and a single hidden layer (hidden units 25) have been
used. The neural-network method has been developed using SNNS
version 4.2 from Stuttgart University (Zell and Mamier 1997). The
training is carried out using error-back-propagation with a sum of
square error function (SSE; Rumelhart et al. 1986).

The input to the first network is either a single sequence or
multiple alignment profiles. Patterns are presented as windows of
five residues in which a prediction is made for the central residue.
The binary encoding scheme has been used in the case where a
single sequence is used as input, whereas a “position-specific scor-
ing matrix generated by PSI-BLAST” has been used as input in the
case of multiple sequence alignment (Kaur and Raghava 2003).
The prediction obtained from the first net and the secondary struc-
ture obtained from PSIPRED were used as input to the second net
(structure-to-structure) net. Four input units in the second net en-
code each residue, where one unit codes for output from the first
net and the remaining three units are the reliability indices of three
secondary structure states—helix, strand, and coil (Fig. 3).

Weka-3.2-based methods

The machine-learning package Weka 3.2 is a collection of ma-
chine-learning algorithms for solving real world data mining prob-
lems (Witten and Frank 1999). Here, we have used the following
three algorithms of Weka: (1) logistic regression, which is a varia-
tion of ordinary regression and particularly useful when the ob-
served outcome is restricted to two values (Hosmer and Lemeshow
1989); (2) a naive Bayes algorithm, which implements Bayesian
classification based on Bayes’ theorem of conditional probability
(Domingos and Pazzani 1997); and (3) a J48 classifier based on the
C4.5 algorithm proposed by Quinlan (1993), which generates a

Prediction of �-turns in proteins
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classification-decision tree for the given data set by recursive par-
titioning of data. As data in this study are highly unbalanced (many
more non-turns than �-turns), we have used Weka’s cost-sensitive
classification option in which the data sets have been weighted
according to the distribution of �-turns and non-�-turns and pen-
alties have been assigned to each class (�-turn/non-�-turn) in the
cost matrix. The penalties have been optimized by learning the
classifier several times.

Multiple sequence alignment and secondary structure

PSIPRED uses PSI-BLAST to detect distant homologs of a query
sequence and generate a position-specific scoring matrix as part of
the prediction process (Jones 1999). These intermediate PSI-
BLAST-generated position-specific scoring matrices are used as
input in our methods in the case in which multiple sequence align-
ment is used. The matrix has 21 × M elements, where M is the
length of the target sequence and each element represents the
frequency of occurrence of each of the 20 amino acids at one
position in the alignment (Altschul et al. 1997). The predicted
secondary structure from PSIPRED is used to filter the �-turn
prediction in the case of statistical methods and input for the struc-
ture-to-structure network and Weka classifiers.

Filtering the prediction

Because the prediction is performed for each residue separately,
prediction includes several unusually short �-turns of one or two
residues. To exclude such unrealistic turns, we have applied a
simple filtering rule, the “state-flipping” rule as described in the
work of Shepherd et al. (1999).

Performance measures

Threshold-dependent measures

Four parameters have been used in the present work to measure
the performance of �-turn prediction methods as described by

Shepherd et al. (1999) for �-turn prediction. These four parameters
can be derived from the four scalar quantities: p (the number of
correctly classified �-turn residues), n (the number of correctly
classified non-�-turn residues), o (the number of non-�-turn resi-
dues incorrectly classified as �-turn residues), and u (the number
of �-turn residues incorrectly classified as non-�-turn residues).
Another way to visualize and arrange these four quantities is to use
a contingency or confusion matrix C:

C = �p u
o n�

The four parameters that can be derived from these four quan-
tities are: (1) Qtotal (or prediction accuracy) is the percentage of
correctly classified residues; (2) Matthew’s correlation coefficient
(MCC), accounts for both over- and underpredictions; (3) Qpred is
the percentage of correctly predicted �-turns (or probability of
correct prediction); and (4) Qobs is the percentage of observed
�-turns that are correctly predicted (or percent coverage). The
parameters can be calculated by the following equations:

Qtotal =
p + n

t

MCC =
pn − ou

��p + o��p + u��n + o��n + u�

Qpredicted =
p

p + o
× 100

Qobserved =
p

p + u
× 100

where t � p + n + o + u is the total number of residues.

Figure 3. (Left) The neural-network system used for �-turn prediction; it consists of two networks: a first-level sequence-to-structure network and a
second-level structure-to-structure network. (Middle) Basic cell containing 20 + 1 units to code residues at that position in the window; here, window
size � 5. (Right) Hidden layer containing 25 units. In the second-level network, four units encode each residue. Closed circles indicate prediction obtained
from first network; open circles indicate secondary structure state (helix, strand, and coil) predicted by PSIPRED.
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Threshold-independent measures

One problem with the threshold-dependent measures is that they
measure the performance on a given threshold. They fail to use all
the information provided by a method. The Receiver Operating
Characteristic (ROC) is a threshold-independent measure that was
developed as a signal-processing technique. For a prediction
method, an ROC plot is obtained by plotting all sensitivity values
(true positive fraction) on the y-axis against their equivalent (1-
specificity) values (false-positive fraction) for all available thresh-
olds on the x-axis. The area under the ROC curve is taken as an
important index because it provides a single measure of overall
accuracy that is not dependent on a particular threshold (Deleo
1993). It measures discrimination, the ability of a method to cor-
rectly classify �-turn and non-�-turn residues. Sensitivity (Sn) and
specificity (Sp) are defined as:

Sn =
p

p + u
and Sp =

n

n + o

Electronic supplemental material

The supplementary information consists of: 1) PDB codes protein
chains; 2) composition of residues in � and non-� turns; and 3)
secondary structure composition of �-turn residues in terms of
DSSP 8 states. It also includes probabilities and different types of
� turns.
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